Monday, 9 October 2017

Centro De Masa Móvil Exponencial


Promedio móvil exponencial Se recomiendan las medias móviles exponenciales como el tipo de media móvil más fiable. Proporcionan un elemento de ponderación, con cada día anterior dado progresivamente menos ponderación. El suavizado exponencial evita el problema encontrado con las medias móviles simples. Donde el promedio tiene una tendencia a marcar dos veces: una vez al comienzo del período de media móvil y otra vez en la dirección opuesta, al final del período. La pendiente media móvil exponencial también es más fácil de determinar: la pendiente está siempre hacia abajo cuando el precio cierra por debajo de la media móvil y siempre arriba cuando el precio está por encima. Para calcular un promedio móvil exponencial (EMA): Tome el precio de hoy multiplicado por un EMA. Añádelo a los ayeres EMA multiplicado por (1 - EMA). Si recalculamos la tabla anterior vemos que el promedio móvil exponencial presenta una tendencia mucho más suave: EMA es la ponderación asociada al valor de los días actuales: 50 se utilizaría para un promedio móvil exponencial de 3 días 10 se utiliza para un período de 19 días La media móvil exponencial y 1 se utiliza para una media móvil exponencial de 199 días. Para convertir un período de tiempo seleccionado en EMA, utilice esta fórmula: EMA 2 / (n 1) donde n es el número de días Ejemplo: El EMA durante 5 días es 2 / (5 días 1) 33.3 Incredible Charts realiza este cálculo automáticamente cuando Seleccione un período de tiempo EMA. Únase a nuestra lista de correo Lea el boletín Diario de comercio de Colin Twiggsrsco, que ofrece análisis fundamentales de la economía y el análisis técnico de los principales índices del mercado, oro, petróleo crudo y forex. Media móvil exponencial - EMA Cargando el reproductor. Los EMA de 12 y 26 días son los promedios a corto plazo más populares, y se utilizan para crear indicadores como la divergencia de convergencia de la media móvil (MACD) y el oscilador de precios porcentuales (PPO). En general, los EMA de 50 y 200 días se utilizan como señales de tendencias a largo plazo. Los comerciantes que emplean el análisis técnico encuentran que las medias móviles son muy útiles y perspicaces cuando se aplican correctamente, pero crean estragos cuando se usan incorrectamente o se malinterpretan. Todos los promedios móviles utilizados comúnmente en el análisis técnico son, por su propia naturaleza, indicadores rezagados. En consecuencia, las conclusiones derivadas de la aplicación de una media móvil a un gráfico de mercado en particular deben ser para confirmar un movimiento del mercado o para indicar su fortaleza. Muy a menudo, en el momento en que una línea de indicador de media móvil ha hecho un cambio para reflejar un movimiento significativo en el mercado, el punto óptimo de entrada al mercado ya ha pasado. Un EMA sirve para aliviar este dilema en cierta medida. Debido a que el cálculo EMA pone más peso en los datos más recientes, abraza la acción del precio un poco más estricta y por lo tanto reacciona más rápido. Esto es deseable cuando se usa un EMA para derivar una señal de entrada de negociación. Interpretación de la EMA Al igual que todos los indicadores de media móvil, son mucho más adecuados para los mercados de tendencias. Cuando el mercado está en una fuerte y sostenida tendencia alcista. La línea de indicadores EMA también mostrará una tendencia alcista y viceversa para una tendencia descendente. Un comerciante vigilante no sólo prestará atención a la dirección de la línea EMA, sino también la relación de la tasa de cambio de una barra a la siguiente. Por ejemplo, a medida que la acción del precio de una fuerte tendencia alcista comienza a aplastarse y retroceder, la tasa de cambio de una barra a la siguiente empezará a disminuir hasta que la línea del indicador se aplaste y la tasa de cambio sea cero. Debido al efecto de retraso, en este punto, o incluso algunas barras antes, la acción del precio debería ya haber invertido. Por lo tanto, se sigue que la observación de una disminución consistente en la tasa de cambio de la EMA podría utilizarse como un indicador que podría contrarrestar el dilema causado por el efecto retardado de las medias móviles. Usos comunes de la EMA Los EMAs se usan comúnmente junto con otros indicadores para confirmar movimientos significativos del mercado y para calibrar su validez. Para los comerciantes que comercian los mercados intradía y de rápido movimiento, la EMA es más aplicable. Muy a menudo los comerciantes utilizan EMAs para determinar un sesgo de negociación. Por ejemplo, si un EMA en un gráfico diario muestra una fuerte tendencia al alza, una estrategia de comerciantes intradía puede ser el comercio sólo desde el lado largo en un intraday chartputational herramientas Analogamente, DataFrame tiene un método cov para calcular covariancias pairwise entre las series en el DataFrame, también excluyendo NA / valores nulos. Suponiendo que los datos faltantes faltan al azar, esto resulta en una estimación para la matriz de covarianza que es imparcial. Sin embargo, para muchas aplicaciones esta estimación puede no ser aceptable porque no se garantiza que la matriz de covarianza estimada sea positiva semi-definida. Esto podría conducir a correlaciones estimadas que tienen valores absolutos que son mayores que uno, y / o una matriz de covarianza no invertible. Ver Estimación de matrices de covarianza para más detalles. DataFrame. cov también admite una palabra clave opcional minperiods que especifica el número mínimo requerido de observaciones para cada par de columnas para tener un resultado válido. Los pesos utilizados en la ventana se especifican mediante la palabra clave wintype. La lista de tipos reconocidos son: boxcar triang blackman hamming bartlett parzen bohman blackmanharris nuttall barthann kaiser (necesidades beta) gaussian (necesita std) generalgaussian (necesita poder, ancho) slepian (necesita ancho). Tenga en cuenta que la ventana del vagón es equivalente a mean (). Para algunas funciones de ventana, se deben especificar parámetros adicionales: Para. sum () con un wintype. No hay normalización hecha a los pesos para la ventana. Pasar pesos personalizados de 1, 1, 1 dará un resultado diferente que pasar pesos de 2, 2, 2. por ejemplo. Al pasar un wintype en lugar de especificar explícitamente los pesos, los pesos ya están normalizados para que el mayor peso sea 1. En contraste, la naturaleza del cálculo. mean () es tal que los pesos se normalizan uno con respecto al otro. Los pesos de 1, 1, 1 y 2, 2, 2 dan el mismo resultado. Rolling nuevo tiempo en la versión 0.19.0. Nuevos en la versión 0.19.0 son la capacidad de pasar un offset (o convertible) a un método. rolling () y hacer que produzca ventanas de tamaño variable basadas en la ventana de tiempo pasada. Para cada punto de tiempo, esto incluye todos los valores anteriores que ocurren dentro del delta de tiempo indicado. Esto puede ser particularmente útil para un índice de frecuencia de tiempo no regular. Este es un índice de frecuencia regular. El uso de un parámetro de ventana entero funciona para rodar a lo largo de la frecuencia de la ventana. Especificar un desplazamiento permite una especificación más intuitiva de la frecuencia de rodadura. Utilizando un índice no regular, pero aún monótono, rodar con una ventana entera no imparte ningún cálculo especial. El uso de la especificación de tiempo genera ventanas variables para estos datos escasos. Además, ahora permitimos que un parámetro opcional en el parámetro especifique una columna (en lugar del valor predeterminado del índice) en un DataFrame. Conocimiento del tiempo Rolling vs. Resampling El uso de. rolling () con un índice basado en el tiempo es muy similar al remuestreo. Ambos operan y realizan operaciones reductivas en objetos pandas indexados en el tiempo. Cuando se utiliza. rolling () con un desplazamiento. El desplazamiento es un tiempo-delta. Tome una ventana de búsqueda hacia atrás en el tiempo, y agregue todos los valores en esa ventana (incluyendo el punto final, pero no el punto de inicio). Este es el nuevo valor en ese punto en el resultado. Se trata de ventanas de tamaño variable en el espacio de tiempo para cada punto de la entrada. Obtendrá un resultado del mismo tamaño que la entrada. Cuando se utiliza. resample () con un desplazamiento. Construir un nuevo índice que es la frecuencia del desplazamiento. Para cada contenedor de frecuencia, el agregado apunta desde la entrada dentro de una ventana que mira hacia atrás en el tiempo que cae en ese contenedor. El resultado de esta agregación es la salida para ese punto de frecuencia. Las ventanas tienen un tamaño de tamaño fijo en el espacio de frecuencia. Su resultado tendrá la forma de una frecuencia regular entre el mínimo y el máximo del objeto de entrada original. Para resumir. Rolling () es una operación de ventana basada en el tiempo, mientras que. resample () es una operación de ventana basada en la frecuencia. Centrar las ventanas De forma predeterminada, las etiquetas se ajustan al borde derecho de la ventana, pero una palabra clave central está disponible para que las etiquetas se puedan establecer en el centro. Funciones de ventana binaria cov () y corr () pueden calcular las estadísticas de las ventanas en movimiento sobre dos Series o cualquier combinación de DataFrame / Series o DataFrame / DataFrame. Aquí está el comportamiento en cada caso: dos Series. Calcular la estadística para el emparejamiento. DataFrame / Series. Calcular las estadísticas para cada columna del DataFrame con la serie pasada, devolviendo así un DataFrame. DataFrame / DataFrame. Por defecto calcula la estadística para los nombres de columna coincidentes, devolviendo un DataFrame. Si se pasa el argumento de palabra clave pairwiseTrue, entonces calcula la estadística para cada par de columnas, devolviendo un Panel cuyos elementos son las fechas en cuestión (consulte la siguiente sección). Computación de covarianzas y correlaciones en pares En el análisis de datos financieros y otros campos es común calcular las matrices de covarianza y correlación para una colección de series de tiempo. A menudo uno también está interesado en la movilidad-ventana covarianza y matrices de correlación. Esto se puede hacer pasando el argumento de palabra clave pairwise, que en el caso de las entradas de DataFrame producirá un Panel cuyos elementos son las fechas en cuestión. En el caso de un solo argumento de DataFrame, el argumento pairwise puede incluso omitirse: Los valores faltantes se ignoran y cada entrada se calcula usando las observaciones completas pairwise. Consulte la sección de covarianza para las advertencias asociadas con este método de cálculo de covarianza y matrices de correlación. Aparte de no tener un parámetro de ventana, estas funciones tienen las mismas interfaces que sus contrapartes de desplazamiento. Como arriba, los parámetros que aceptan son: minperiodos. El umbral de puntos de datos no nulos que se requieren. El valor predeterminado es el mínimo necesario para calcular la estadística. No se emitirán NaNs una vez que se hayan observado puntos de datos no nulos de los minperiodos. centrar. Boolean, si se deben establecer las etiquetas en el centro (por defecto es False) La salida de los métodos. rolling y. expanding no devuelve un NaN si hay al menos valores no nulos de minperiodos en la ventana actual. Esto difiere de cumsum. Cumprod. Cummax Y cummin. Que devuelven NaN en la salida dondequiera que se encuentre un NaN en la entrada. Una estadística de ventana en expansión será más estable (y menos sensible) que su contrapartida de ventana de balanceo a medida que el tamaño creciente de la ventana disminuye el impacto relativo de un punto de datos individual. A modo de ejemplo, aquí está la salida media () para el conjunto de datos de series temporales anteriores: Ventas Exponencialmente Ponderadas Un conjunto relacionado de funciones son versiones ponderadas exponencialmente de varias de las estadísticas anteriores. Se accede a una interfaz similar a. rolling y. expanding a través del método. ewm para recibir un objeto EWM. Se proporcionan una serie de métodos EW en expansión (exponencialmente ponderados):

No comments:

Post a Comment